SAS Enterprise Guide is a menu-driven, Windows GUI tool for SAS.
N/A
SAS Enterprise Miner
Score 9.0 out of 10
N/A
SAS Enterprise Miner is a data science and statistical modeling solution enabling the creation of predictive and descriptive models on very large data sources across the organization.
I haven't used SPSS myself but from what I was told, integration of data was much more limited and not easy to used. Also, the number of people with SPSS knowledge is less than the number of SAS users so finding workforce can be an issue. The whole SAS solution just made much …
SAS Enterprise Miner
No answer on this topic
Features
SAS Enterprise Guide
SAS Enterprise Miner
Platform Connectivity
Comparison of Platform Connectivity features of Product A and Product B
SAS Enterprise Guide
-
Ratings
SAS Enterprise Miner
8.8
4 Ratings
5% above category average
Connect to Multiple Data Sources
00 Ratings
8.14 Ratings
Extend Existing Data Sources
00 Ratings
9.04 Ratings
Automatic Data Format Detection
00 Ratings
9.34 Ratings
MDM Integration
00 Ratings
9.02 Ratings
Data Exploration
Comparison of Data Exploration features of Product A and Product B
SAS Enterprise Guide
-
Ratings
SAS Enterprise Miner
8.1
4 Ratings
3% below category average
Visualization
00 Ratings
7.14 Ratings
Interactive Data Analysis
00 Ratings
9.14 Ratings
Data Preparation
Comparison of Data Preparation features of Product A and Product B
SAS Enterprise Guide
-
Ratings
SAS Enterprise Miner
8.0
4 Ratings
2% below category average
Interactive Data Cleaning and Enrichment
00 Ratings
7.84 Ratings
Data Transformations
00 Ratings
8.24 Ratings
Data Encryption
00 Ratings
8.12 Ratings
Built-in Processors
00 Ratings
8.12 Ratings
Platform Data Modeling
Comparison of Platform Data Modeling features of Product A and Product B
SAS Enterprise Guide
-
Ratings
SAS Enterprise Miner
8.8
4 Ratings
5% above category average
Multiple Model Development Languages and Tools
00 Ratings
7.54 Ratings
Automated Machine Learning
00 Ratings
9.82 Ratings
Single platform for multiple model development
00 Ratings
8.54 Ratings
Self-Service Model Delivery
00 Ratings
9.23 Ratings
Model Deployment
Comparison of Model Deployment features of Product A and Product B
SAS Enterprise Guide is good at taking various datasets and giving analyst/user ability to do some transformations without substantial amounts of code. Once the data is inside SAS, the memory of it is very efficient. Using SAS for data analysis can be helpful. It will give good statistics for you, and it has a robust set of functions that aid analysis.
SAS Enterprise Miner is world-class software for individuals interested in developing reproducible models in a reasonable amount of time. Perhaps the most useful part of SAS Enterprise Miner is the ability to compare models with other models without writing code. The ensemble modeling capabilities is the easiest way to do ensemble modeling I have come across. SAS Enterprise Miner is well-suited for beginning to advanced analysts who know something about advanced analytics. The software is not well-suited for analysts or companies that have little interest in advanced modeling.
Enterprise Miner is really visual and lets you do a whole lot without actually going into the detailed options. For decent results, you should really explore the different advanced options though.
The recent versions of Miner allow users to use R code in Miner. You can then compare several models and approach to get the best performing model.
The resulting data is really well displayed and easy to understand (ex: the lift graph, score ranking, etc.)
Miner has the ability to integrate custom SAS code which allows the user to add functionalities that are specific to the project.
Process time of data is a bit long. It depends on the size of your data and complexity of your project tree.
There is not enough online free training videos.
While working with the project tree sometimes the links between the modules are broken or the order for running the modules get mixed up. You should know your project tree by heart.
It's not all bad, but I don't believe that an enterprise purchase of SAS is worth the expense considering the widely available set of tools in the data analytics space at the moment. In my company, it's a good tool because others use it. Otherwise, I wouldn't purchase a new set of it because it doesn't have some of the better analytical functions in it.
Although I use SAS support for information on functions, these are SAS related and haven't really come across anything that is specifically for SAS EG.
SAS' customer support used to be non-existent many years ago. Today, contacting SAS customer support is great. They are responsible, knowledgable, and seem to have an interest in getting the results right the first time. With that said, Enterprise Miner's online support is weak, probably because the user base is much smaller than other tools.
I've not worked hands-on with the implementation team, but there were no escalations barring a few hiccups in the deployment due to change in requirement & adoption to our company's remote servers.
Why I prefer SAS EG: Data processing speed is much faster than that R Studio. It can load any amount of data and any type of data like structured or unstructured or semi-structured. Its output delivery system by which we have the output in PDF file makes it very comfortable to use and share that file to clients very easily. Inbuilt functions are very powerful and plentiful. Facility of writing macros makes it far away from its competitors.
SAS EM has a very great set of machine learning and predictive analytics toolsets, which helped our organization achieve its goals. We used other tools, but for us, SAS EM was the most intuitive and easy to learn the tool and it provides greater data exploration and data preparation capabilities compared to the other tools we used.
Positive (cost): SAS made a bundle that include unlimited usage of SAS/Enterprise Guide with a server solution. That by itself made the company save a lot of money by not having to pay individual licences anymore.
Positive (insight): Data analysts in business units often need to crunch data and they don't have access to ETL tools to do it. Having access to SAS/EG gives them that power.
Positive (time to market): Having the users develop components with SAS/EG allows for easier integration in a production environment (SAS batch job) as no code rework is required.
In our organization, users were using SAS already so the learning curve was really low. Within a few weeks after the implementation, the users were already delivering models developed with SAS Enterprise Miner. It is difficult to talk about ROI as models were already being developed before. It was mostly a change of technology and it was a smooth transition.
Going with Enterprise Miner came with migration from desktop use of SAS to a server use of SAS. This created a new role of SAS administrator. This was obviously a cost but as the use of SAS increased greatly, it was expected.
From a methodology standpoint, Enterprise Miner helped greatly in the documentation of the model development which was a requirement in a few groups such as the risk groups. Having a visual "GUI-like" approach to development, the flowchart or diagram of the project in Miner was able to give users a good understanding of the approach the analyst took to develop the model.