IBM watsonx.ai vs. Jupyter Notebook

Overview
ProductRatingMost Used ByProduct SummaryStarting Price
IBM watsonx.ai
Score 8.7 out of 10
N/A
Watsonx.ai is part of the IBM watsonx platform that brings together new generative AI capabilities, powered by foundation models, and traditional machine learning into a studio spanning the AI lifecycle. Watsonx.ai can be used to train, validate, tune, and deploy generative AI, foundation models, and machine learning capabilities, and build AI applications with less time and data.
$0
Jupyter Notebook
Score 8.6 out of 10
N/A
Jupyter Notebook is an open-source web application that allows users to create and share documents containing live code, equations, visualizations and narrative text. Uses include: data cleaning and transformation, numerical simulation, statistical modeling, data visualization, and machine learning. It supports over 40 programming languages, and notebooks can be shared with others using email, Dropbox, GitHub and the Jupyter Notebook Viewer. It is used with JupyterLab, a web-based IDE for…N/A
Pricing
IBM watsonx.aiJupyter Notebook
Editions & Modules
Free Trial
$0
ML functionality (20 CUH limit /month); Inferencing (50,000 tokens / month)
Standard
$1,050
Monthly tier fee; additional usage based fees
Essentials
Contact Sales
Usage based fees
No answers on this topic
Offerings
Pricing Offerings
IBM watsonx.aiJupyter Notebook
Free Trial
YesNo
Free/Freemium Version
YesNo
Premium Consulting/Integration Services
YesNo
Entry-level Setup FeeNo setup feeNo setup fee
Additional DetailsPricing for watsonx.ai includes: model inference per 1000 tokens and ML tools and ML runtimes based on capacity unit hours.
More Pricing Information
Community Pulse
IBM watsonx.aiJupyter Notebook
Features
IBM watsonx.aiJupyter Notebook
Platform Connectivity
Comparison of Platform Connectivity features of Product A and Product B
IBM watsonx.ai
-
Ratings
Jupyter Notebook
9.0
22 Ratings
7% above category average
Connect to Multiple Data Sources00 Ratings10.022 Ratings
Extend Existing Data Sources00 Ratings10.021 Ratings
Automatic Data Format Detection00 Ratings8.514 Ratings
MDM Integration00 Ratings7.415 Ratings
Data Exploration
Comparison of Data Exploration features of Product A and Product B
IBM watsonx.ai
-
Ratings
Jupyter Notebook
7.0
22 Ratings
18% below category average
Visualization00 Ratings6.022 Ratings
Interactive Data Analysis00 Ratings8.022 Ratings
Data Preparation
Comparison of Data Preparation features of Product A and Product B
IBM watsonx.ai
-
Ratings
Jupyter Notebook
9.5
22 Ratings
16% above category average
Interactive Data Cleaning and Enrichment00 Ratings10.021 Ratings
Data Transformations00 Ratings10.022 Ratings
Data Encryption00 Ratings8.514 Ratings
Built-in Processors00 Ratings9.314 Ratings
Platform Data Modeling
Comparison of Platform Data Modeling features of Product A and Product B
IBM watsonx.ai
-
Ratings
Jupyter Notebook
9.3
22 Ratings
10% above category average
Multiple Model Development Languages and Tools00 Ratings10.021 Ratings
Automated Machine Learning00 Ratings9.218 Ratings
Single platform for multiple model development00 Ratings10.022 Ratings
Self-Service Model Delivery00 Ratings8.020 Ratings
Model Deployment
Comparison of Model Deployment features of Product A and Product B
IBM watsonx.ai
-
Ratings
Jupyter Notebook
10.0
20 Ratings
16% above category average
Flexible Model Publishing Options00 Ratings10.020 Ratings
Security, Governance, and Cost Controls00 Ratings10.019 Ratings
Best Alternatives
IBM watsonx.aiJupyter Notebook
Small Businesses
InterSystems IRIS
InterSystems IRIS
Score 7.8 out of 10
IBM Watson Studio
IBM Watson Studio
Score 9.9 out of 10
Medium-sized Companies
InterSystems IRIS
InterSystems IRIS
Score 7.8 out of 10
Posit
Posit
Score 10.0 out of 10
Enterprises
Dataiku
Dataiku
Score 8.2 out of 10
Posit
Posit
Score 10.0 out of 10
All AlternativesView all alternativesView all alternatives
User Ratings
IBM watsonx.aiJupyter Notebook
Likelihood to Recommend
9.0
(33 ratings)
10.0
(23 ratings)
Likelihood to Renew
6.4
(1 ratings)
-
(0 ratings)
Usability
7.9
(6 ratings)
10.0
(2 ratings)
Support Rating
-
(0 ratings)
9.0
(1 ratings)
Ease of integration
6.4
(2 ratings)
-
(0 ratings)
Product Scalability
9.1
(1 ratings)
-
(0 ratings)
User Testimonials
IBM watsonx.aiJupyter Notebook
Likelihood to Recommend
IBM
I have built a code accelerator tool for one of the IBM product implementation. Although there was a heavy lifting at the start to train the model on specifics of the packaged solution library and ways of working; the efficacy of the model is astounding. Having said that, watsonx.ai is very well suited for customer service automation, healthcare data analytics, financial fraud detection, and sentiment analysis kind of projects. The Watsonx.ai look and feel is little confusing but I understand over a period of time , it will improve dramatically as well. I do feel that Watsonx.ai has certain limitations from cross-platform deployment flexibility. If an organization is deeply invested in a multi-cloud environment, Watson's integration on other cloud platforms may not be seamless comported to other AI platforms.
Read full review
Open Source
I've created a number of daisy chain notebooks for different workflows, and every time, I create my workflows with other users in mind. Jupiter Notebook makes it very easy for me to outline my thought process in as granular a way as I want without using innumerable small. inline comments.
Read full review
Pros
IBM
  • It allows specialists to apply several base models for specific subtasks in the field of NLP.
  • Gives the availability of many models developed for AI enhancement for different solutions.
  • Has incorporated functionality for data governance and security to support access to AI tools by multiple users.
Read full review
Open Source
  • Simple and elegant code writing ability. Easier to understand the code that way.
  • The ability to see the output after each step.
  • The ability to use ton of library functions in Python.
  • Easy-user friendly interface.
Read full review
Cons
IBM
  • IBM watsonx.ai is expensive than other platforms.
  • Limited integraions though it has many but still some tools integrations not there for medical usecase
  • Its little difficult to learn as right now not many open reseouces
  • Community is not that strong to get any answer
Read full review
Open Source
  • Need more Hotkeys for creating a beautiful notebook. Sometimes we need to download other plugins which messes [with] its default settings.
  • Not as powerful as IDE, which sometimes makes [the] job difficult and allows duplicate code as it get confusing when the number of lines increases. Need a feature where [an] error comes if duplicate code is found or [if a] developer tries the same function name.
Read full review
Likelihood to Renew
IBM
I still don't have enough experience, but i have seen a lot of demos and i have made some real world scenarios and so far so long every thing looks fine. I was at IBM Think 2025 and IBM TechXchange 2025 and the labs were really usefull and simple to understand.
Read full review
Open Source
No answers on this topic
Usability
IBM
I needed some time to understand the different parts of the web UI. It was slightly overwhelming in the beginning. However, after some time, it made sense, and I like the UI now. In terms of functionality, there are many useful features that make your life easy, like jumping to a section and giving me a deployment space to deploy my models easily.
Read full review
Open Source
Jupyter is highly simplistic. It took me about 5 mins to install and create my first "hello world" without having to look for help. The UI has minimalist options and is quite intuitive for anyone to become a pro in no time. The lightweight nature makes it even more likeable.
Read full review
Support Rating
IBM
I still don't have enough experience, but i have seen a lot of demos and i have made some real world scenarios and so far so long every thing looks fine. I was at IBM Think 2025 and IBM TechXchange 2025 and the labs were really usefull and simple to understand.
Read full review
Open Source
I haven't had a need to contact support. However, all required help is out there in public forums.
Read full review
Alternatives Considered
IBM
IBM watsonx.ai has been far superior to that of Chat GPT AI. the UI elements prompt responses and overall execution of the AI was much better and more accurate compared to the competition. I can not recommend using this platform enough. Great job IBM. I hope the team behind this project continues to grow and prosper.
Read full review
Open Source
With Jupyter Notebook besides doing data analysis and performing complex visualizations you can also write machine learning algorithms with a long list of libraries that it supports. You can make better predictions, observations etc. with it which can help you achieve better business decisions and save cost to the company. It stacks up better as we know Python is more widely used than R in the industry and can be learnt easily. Unlike PyCharm jupyter notebooks can be used to make documentations and exported in a variety of formats.
Read full review
Scalability
IBM
I still don't have enough experience, but i have seen a lot of demos and i have made some real world scenarios and so far so long every thing looks fine. I was at IBM Think 2025 and IBM TechXchange 2025 and the labs were really usefull and simple to understand.
Read full review
Open Source
No answers on this topic
Return on Investment
IBM
  • Time saving to set up the infrastructure - without watsonx.ai we would have had to set up everything individually
  • The first point translates directly into cost savings
  • The compliance aspect was a game changer for us and provided us with the confidence to focus all our efforts only on IBM watsonx.ai
Read full review
Open Source
  • Positive impact: flexible implementation on any OS, for many common software languages
  • Positive impact: straightforward duplication for adaptation of workflows for other projects
  • Negative impact: sometimes encourages pigeonholing of data science work into notebooks versus extending code capability into software integration
Read full review
ScreenShots

IBM watsonx.ai Screenshots

Screenshot of the foundation models available in watsonx.ai. Clients have access to IBM selected open source models from Hugging Face, as well as other third-party models, and a family of IBM-developed foundation models of different sizes and architectures.Screenshot of the Prompt Lab in watsonx.ai, where AI builders can work with foundation models and build prompts using prompt engineering techniques in watsonx.ai to support a range of Natural Language Processing (NLP) type tasks.Screenshot of the Tuning Studio in watsonx.ai, where AI builders can tune foundation models with labeled data for better performance and accuracy.Screenshot of the data science toolkit in watsonx.ai where AI builders can build machine learning models automatically with model training, development, visual modeling, and synthetic data generation.