Apache Flink is a framework and distributed processing engine for stateful computations over unbounded and bounded data streams. Flink has been designed to run in all common cluster environments, perform computations at in-memory speed and at any scale. And FlinkCEP is the Complex Event Processing (CEP) library implemented on top of Flink. Users can detect event patterns in streams of events.
N/A
Pricing
Apache Flink
Editions & Modules
No answers on this topic
Offerings
Pricing Offerings
Apache Flink
Free Trial
No
Free/Freemium Version
No
Premium Consulting/Integration Services
No
Entry-level Setup Fee
No setup fee
Additional Details
—
More Pricing Information
Community Pulse
Apache Flink
Considered Both Products
Apache Flink
Verified User
Engineer
Chose Apache Flink
Apache Spark is more user-friendly and features higher-level APIs. However, it was initially built for batch processing and only more recently gained streaming capabilities. In contrast, Apache Flink processes streaming data natively. Therefore, in terms of low latency and …
In well-suited scenarios, I would recommend using Apache Flink when you need to perform real-time analytics on streaming data, such as monitoring user activities, analyzing IoT device data, or processing financial transactions in real-time. It is also a good choice in scenarios where fault tolerance and consistency are crucial. I would not recommend it for simple batch processing pipelines or for teams that aren't experienced, as it might be overkill, and the steep learning curve may not justify the investment.
Python/SQL API, since both are relatively new, still misses a few features in comparison with the Java/Scala option
Steep Learning Curve, it's documentation could be improved to something more user-friendly, and it could also discuss more theoretical concepts than just coding
Apache Spark is more user-friendly and features higher-level APIs. However, it was initially built for batch processing and only more recently gained streaming capabilities. In contrast, Apache Flink processes streaming data natively. Therefore, in terms of low latency and fault tolerance, Apache Flink takes the lead. However, Spark has a larger community and a decidedly lower learning curve.